
Рациональная противомикробная терапия в стационаре Санкт-Петербург, 6 апреля 2012 г.

Антибиотики и антибиотикорезистентность

Яковлев С.В.

Альянс клинических химиотерапевтов и микробиологов 1 МГМУ им. И.М.Сеченова

Антибиотики и смертность от инфекционных болезней в развитых странах [Р. Periti , 1997]

Основные группы антибактериальных препаратов

•	Бета-лактамы	35
•	Аминогликозиды	6
•	Хинолоны	13
•	Макролиды	7
•	Гликопептиды	1
•	Оксазолидиноны	1
•	Тетрациклины	3
•	Сульфаниламиды	6
•	Другие классы	10
•	Линкозамиды	2
•	Нитрофураны	4
•	Нитроимидазолы	4
•	Bcero:	92

Отличительные особенности антибиотиков как лекарственных средств

- Мишень действия микроорганизм
- Избирательность действия на прокариотическую клетку
- Снижение активности эффективности со временем

Динамика чувствительности синегнойной палочки к ципрофлоксацину

Период	МПК ₉₀ , мкг/мл <i>P.aeruginosa</i>	Режим дозирования, в/в
1980-е	0,1-1	400 мг в сут
Середина 1990-х	1-4	800 мг в сут
2000-2010	2-32	1,2 — 2,4 г в сут

Бета-лактамные антибиотики

Пенициллины

- Природные
- Полусинтетические
 - Аминопенициллины
 - Пенициллиназостабильные

Цефалоспорины

• I, II, III, IV поколений

Карбапенемы

Ингибитор-защищенные бета-лактамы

Полусинтетические пенициллины

Аминопенициллины:

Ампициллин

- Стрептококки
- Пневмококки
- Энтерококки
 - Грам(-) устойчивость!
- Показания
 - Стрептококковые инфекции
 - S.pyogenes
 - 1 г каждые 4-6 ч
 - Энтерококковые инфекции
 - 2 г каждые 4-6 ч

<u>Антистафилококковые</u> <u>Оксациллин</u>

- S.aureus (MSSA)
 - Staphylococcus spp.
- Показания
 - Стафилококковые инфекции
- Режим дозирования
 - Кожи и мягких тканей
 - 1 г каждые 4-6 ч
 - Сепсис
 - 2 г каждые 4-6 ч

Ингибитор-защищенные бета-лактамы

Амоксициллин/клавуланат Ампициллин/сульбактам

Внебольничные инфекции КиМТ Абдоминальные Респираторные

(S.aureus, S.pyogenes, S.pneumoniae, E.coli)

Пиперациллин/тазобактам Цефоперазон/сульбактам

Нозокомиальные инфекции

Антимикробная активность цефалоспоринов

- І поколение
 - цефазолин
- II поколение
 - цефуроксим

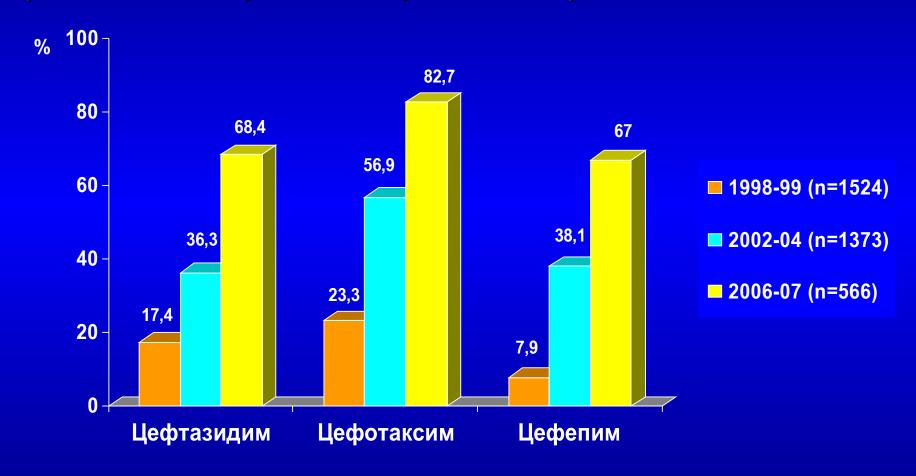
- III поколение
 - цефотаксим, цефтриаксон, цефтазидим, цефоперазон
- IV поколение
 - цефепим

ограниченный спектр преим. Грам(+)

широкий спектр Грам(-) и Грам(+)

Клиническое применение цефазолина и цефуроксима

- Предоперационная профилактика
- Стафилококковые инфекции (MSSA)
- Эмпирическая терапия внебольничных неосложненные инфекции кожи и мягких тканей


Не подходят для эмпирической терапии нозокомиальных инфекций !!!

Цефалоспорины III поколения

Группа IIIa Группа IIIb «Антистрептококковые» «Антипсевдомонадные» Цефтазидим Цефотаксим Цефтриаксон Цефоперазон Enterobacteriaceae Streptococci (= Амп) + P.aeruginosa +/- S.aureus (< Окс, ЦСІ-ІІ) +/- Acinetobacter

Цеф. III гидролизуются бета-лактамазами Грам(-) бактерий (БЛРС):
Частота продукции у энтеробактерий:
ОРИТ - >50% (в ср. 78%), вне ОРИТ – 25-40%

Динамика резистентности Enterobacteriaceae к цефалоспоринам III-IV поколений в ОРИТ (36 стационаров 26 городов РФ)

Эдельштейн М.В., 2008

Цефалоспорины III поколения

Цефотаксим, цефтриаксон

- Ограничить при госпитальных инфекциях (только вне ОРИТ)
- Внебольничные: пневмония, менингит, мочевые
 - Средства выбора

Антипсевдомонадные: цефтазидим, цефоперазон

- только *P.aeruginosa*
- Цефоперазон: + инфекции ЖВП и кишечника (ФК)

Цефалоспорины IV поколения

Цефепим

- Спектр активности сходен с цефалоспоринами III
 - = ЦС IIIa против стрептококков
 - = ЦС IIIb против P.aeruginosa

- Сохраняет эффективность против некоторых резистентных к ЦСІІІ энтеробактерий
 - Гиперпродуцентов АмрС (Enterobacter, Serratia)
 - БЛРС нет
- В последние годы значение препарата для лечения НИ снизилось (цефепим = цефтазидим)
 - Для НИ 6 г/сут

Цефоперазон/сульбактам (сульперазон)

- Низкий уровень устойчивости возбудителей нозокомиальных инфекций в РФ
 - Меньше, чем устойчивость к цефалоспоринам III-IV поколения, фторхинолонам
- Препарат выбора стартовой эмпирической терапии в ОРИТ (НПивл)
- Послеоперационный перитонит
- Acinetobacter средство выбора

Карбапенемы

Антипсевдомонадные

Без активности против P.aeruginosa

Имипенем

Меропенем

Дорипенем

Эртапенем

Эртапенем

- Не Антипсевдомонадный карбапенем
 - P.aeruginosa и Acinetobacter природно устойчивы
- Активность против Грам(+), Enterobacteriaceae и анаэробов сходна с имипенемом
- Позиционирование:
 - ОРИТ: Тяжелые внебольничные инфекции
 - Вне ОРИТ (отсутствие риска P.aeruginosa):
 - Тяжелые внебольничные и ранние послеоперационные нозокомиальные абдоминальные инфекции
 - Нозокомиальная пневмония
 - Диабетическая стопа
 - Инфекции, вызванные БЛРС-продуцентами
- Режим дозирования: 1 г 1 раз в сутки (макс. 2 г)

Отличительные свойства антисинегнойных карбапенемов

- Наиболее широкий спектр антимикробной активности среди бета-лактамных антибиотиков
- Проявляют стабильность к большинству беталактамаз классов A, C и D
 - Сохраняют активность против Enterobacteriaceae, устойчивых к пенициллинам/цефалоспоринам
- В рандомизированных исследованиях по эффективности не уступают или превосходят комбинированные режимы терапии
- Наиболее надежные средства эмпирической терапии нозокомиальных инфекций в ОРИТ
 - Адекватность в режиме монотерапии достигается в 85-90%

Спектр природной активности антисинегнойных карбапенемов

Устойчивые «Проблемные» Чувствительные микроорганизмы микроорганизмы микроорганизмы

MRSA
Enterococcus faecium
S.maltophilia

Enterococcus faecalis
P.aeruginosa

Стафилококки
Стрептококки
Enterobacteriaceae
Acinetobacter
H.influenzae
Анаэробы

Современное значение антипсевдомонадных карбапенемов

- Эмпирическая терапия в ОРИТ и хирургии
 - НПивл, поздняя
 - Инфицированный панкреонекроз
 - Посттравматический и послеоперационный менингит (меропенем)
 - Тяжелый нозокомиальный сепсис с ПОН/шоком
- Этиотропная терапия
 - Грам(-) бактерии, продуценты БЛРС
 - (Klebsiella spp., E.coli)

Современное значение аминогликозидов в стационаре

- Высокий уровень устойчивости Грам(-) возбудителей и низкая тканевая пенетрация лимитируют применение аминогликозидов в монотерапии (кроме инфекций мочевыводящих путей)
- Данные клинических исследований и мета-анализов не подтверждают клинический синергизм между АГ и бета-лактамами/фторхинолонами
- Комбинация амикацина и бета-лактамов тормозит формирование устойчивости Pseudomonas aeruginosa

Аминогликозиды

Развитие устойчивости Грам(-) бактерий к аминогликозидам Гентамицин = Тобрамицин

Развитие устойчивости Грам(+) бактерий Гентамицин = Тобрамицин = Нетилмицин = Амикацин

Экспертное правило: устойчивость к Гента – устойчивость ко всем АГ

Применение аминогликозидов

Гентамицин

- Стафилококковые инфекции (+/- оксациллин/ванкомицин)
- Энтерококковые инфекции (+ ампициллин/ванкомицин)

Амикацин

- ОРИТ
- Инфекции, вызванные *P.aeruginosa* (в комбинации с пенициллинами/цефалоспоринами)

Режим дозирования

- Гентамицин 5 мг/кг/сут, амикацин 15 мг/кг/сут
- Вся суточная доза в одно введение

Фторхинолоны

 Ранние: ципрофлоксацин офлоксацин пефлоксацин Преим. Грам(-) Ципро > Офло > Пефло слабая против Грам(+)

• Новые: левофлоксацин моксифлоксацин

Более высокая против Грам(+)

Лимитирующие факторы: широкое распространение устойчивости Грам(-)

Факторы в пользу клинической эффективности: хорошая тканевая ФК концентрации в тканях в 1,5-2 раза выше сывороточных

Какие фторхинолоны нужны для лечения инфекций в стационаре?

- Ранние (ципрофлоксацин, офлоксацин, пефлоксацин)
 - Нозокомиальные инфекции
 - Преим. Грам(-)
 - Лимитирующий фактор: низкая активность против S.aureus и S.pyogenes
 - Инфекции мочевыводящих путей
- Новые (левофлоксацин, моксифлоксацин)
 - Преим. тяжелые осложненные внебольничные
 - Более высокая эффективность по сравнению с ранними ФХ
 - Левофлоксацин 500-1000 мг 1 раз в сутки
 - Моксифлоксацин 400 мг 1 раз в сутки
 - Обладает антианаэробной активностью
 - Полная перекрестная резистентность нозокомиальных Грам(-) возбудителей к ранним и новым фторхинолонам
 - Значение при госпитальных инфекциях дискутабельно

Ванкомицин

- Показания к применению
 - MRSA инфекции
 - Энтерококковые инфекции (Амп, Пен R)
- Режим дозирования:
 - в/в (60-90 мин инфузия) по 1 г каждые 12 часов (?)
 - или 15-20 мг/кг каждые 8-12 ч ?
- «Проблемные» для ванкомицина локализации инфекций
 - Дыхательные пути, клапаны сердца, ЦНС, кость

Условия безопасного применения ванкомицина

• Использовать хроматографически очищенные препараты

- Ванког

CI_{cr} =

• Медлен

При со дозиро

• Коррекц

• Избегаті препаратамь (140 – возраст) х масса тела

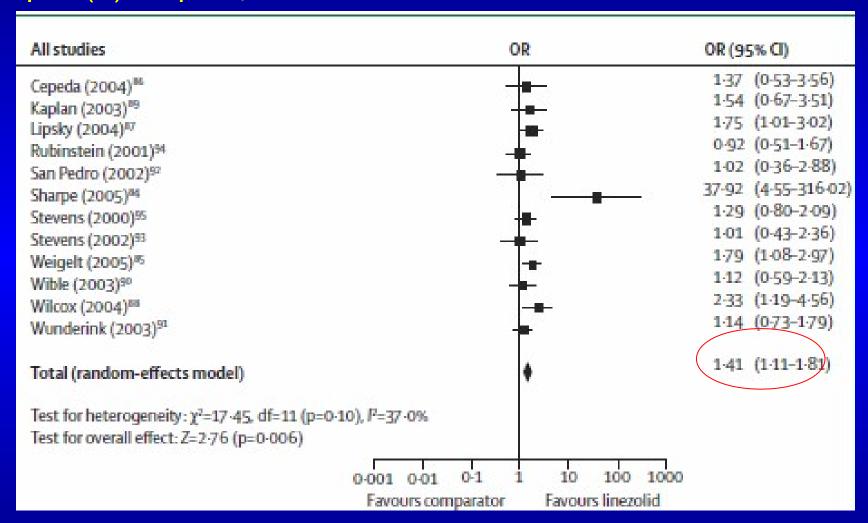
72 х креатинин (в мг/дл)

Женщины: 0,85 х Cl_{cr} мужчин

 Коррекция режима дозирования по клиренсу креатинина

Новые анти-MRSA антибиотики

Линезолид (Зивокс)


Даптомицин (Кубицин)

Тигециклин (Тигацил)

Характеристики линезолида (Зивокса), определяющие позиционирование в медицине

- В РФ не выявлено устойчивых к линезолиду штаммов
- Документированная клиническая эффективность при MRSA, VISA и VRE инфекциях
 - = или > препаратов сравнения
 - Личный опыт превосходит результаты рандомизированных КИ
- Безопасность и стабильная эффективность у «проблемных» пациентов
- Хорошая тканевая фармакокинетика (К_{ткань} > К_{сыв})
- Подавление продукции стафилококковых экзотоксинов

Линезолид или ванкомицин/бета-лактам при лечении Грам(+) инфекций: мета-анализ РКИ

Falagas ME, e.a. Lancet Infect Dis 2008;8:53-66

Линезолид в сравнении с ванкомицином при лечении нозокомиальной пневмонии, вызванной MRSA (исследование ZEPHyR): Результаты

Анализ эффек-ти	Линезолид	Ванкомицин	Δ	Р	95%ДИ
Клинический успех	83.3	69.9	13.4	0.002	(4.9, 22)
Эрадикация MRSA	81.9	60.6	21.3	<0.001	(12.3, 30.2)
У больных с ВАП	82.8	66.7	16.1	0.003	(5.8, 26.5)

Kunkel M, et al. 48th IDSA Annual Meeting, October 21-24, 2010

Позиционирование линезолида

- НП, вкл. Нпивл
- Некротические инфекции мягких тканей с сепсисом
- Неуспех ванкомицина, предшествующее применение ванкомицина
 - MRSA инфекции у больных на гемодиализе
 - Тяжелый сепсис/шок с ОПН (кроме ангиогенного)
 - MRSA инфекции ЦНС, вкл. инфекцию шунтов

Даптомицин (Кубицин)

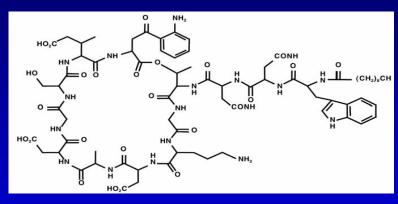
Новый класс антибиотиков – липопептид

Новый механизм действия

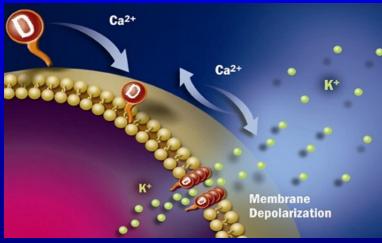
Активен против Грам(+) бактерий:

MSSA + MRSA + VISA

Enterococci + VRE


Регистрация FDA (2003) и EC (2006)

- осложненные инфекции КиМТ
- стаф. бактериемия/эндокардит


2009: разрешено 2-мин в/в введение

Применяется 1 раз в сутки в дозе 4 или 6 мг/кг

ПЭ: миотоксичность

Свойства даптомицина, определяющие перспективы его применения

- Быстрое бактерицидное действие против MRSA
- Активность MRSA = MSSA
- Проявляет активность против MRSA в биопленках
 - ИЭ протезированного клапана
 - Инфицированные катетеры, ВС устройства, импланты
 - Остеомиелит

Тигециклин (Тигацил)

- Новый класс глицилциклины
 - производное миноциклина
- Эффективен при инфекциях кожи и мягких тканей и абдоминальных инфекциях, ВП
- Дозирование: 50 мг * в/в каждые 12 часов [* Первая доза 100 мг]

Тигециклин: первый антибиотик широкого спектра с активностью против MRSA: возможность монотерапии?

Активность против Грам(+)

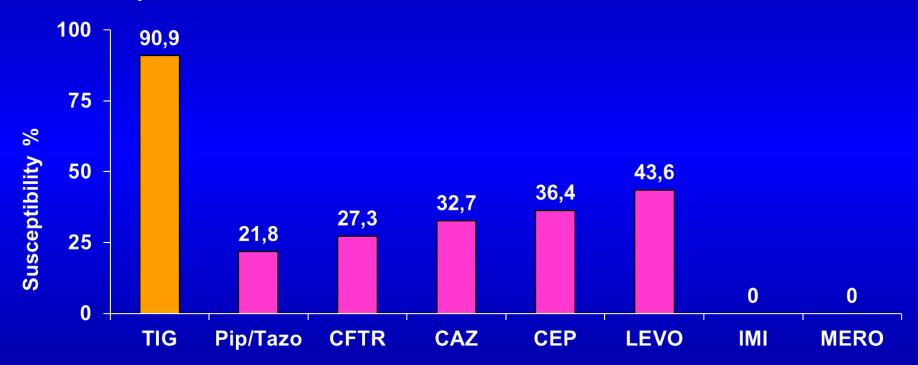
- Стафилококки, чувств. К оксациллину и MRSA
- **Энтерококки**, вкл. E.faecium, устойчивый к ванкомицину
- Пневмококки, вкл. полирезистентные

Активность против Грам(-)

- Энтеробактерии, включая штаммы, устойчивые к цефалоспоринам (БЛРС) и карбапенемам (КРС, NDM)
- Ацинетобактерии, в т.ч. устойчивые к карбапенемам и другим антибиотикам
- Stenotrophomonas maltophilia
- Анаэробы бактероиды

P.aeruginosa – природная устойчивость

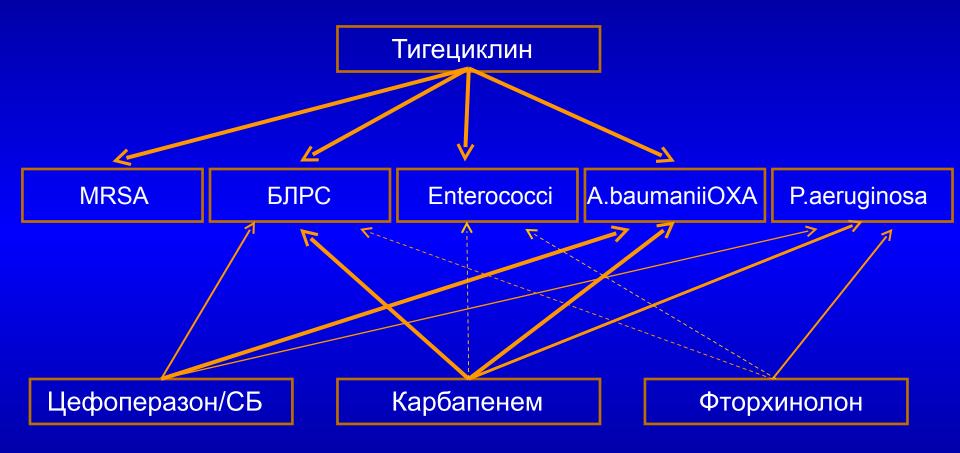
Результаты (II)


In vitro activity* of tigecycline and comparators against 5,996 ESBL-producing Enterobacteriaceae from 2004-2009

Tigecyclin, Piperacillin-Tazobactam, Ceftriaxon, Ceftazidim, Cefepime, Levofloxacin, Imipenem, Meropenem

Результаты (III)

In vitro activity* of tigecycline and comparators against 55 imipenem-resistant isolates of Enterobacteriaceae



Tigecyclin, Piperacillin-Tazobactam, Ceftriaxon, Ceftazidim, Cefepime, Levofloxacin, Imipenem, Meropenem

Потенциал тигециклина в медицине

- В качестве средства целенаправленной этиотропной терапии НИ, вызванных полирезистентными бактериями
 - БЛРС: альтернатива карбапенемам
 - Acinetobacter baumanii: альтернатива сульбактаму
 - Klebsiella, E.coli, устойчивые к карбапенемам
 - MRSA: при полимикробных инфекциях
- Эмпирическая терапия
 - Вторичный перитонит с факторами риска R
 - Третичный перитонит
 - Некротические инфекции мягких тканей, диабетическая стопа у пациентов с факторами риска R

Потенциал антибиотиков для эмпирической терапии

Пациент 68 лет с инфицированной раной стопы

Ситуация 1. Поступил из дома. Пять дней назад рана стопы.

Возможные возбудители: Грам(+)

Решение: Оксациллин, цефалоспорин І-ІІ, АМО/КК

Ситуация 2. Инфицированный пролежень стопы на 10 сутки ОНМК Возможные возбудители: Грам(-) и Грам(+), риск R штаммов Решение: ПИП/ТАЗО, ЦЕФ/СБ

Ситуация 3. Госпитализирован из дома с декомпенсированный сахарным диабетом. Полинейропатия. Макро- и микроангиопатия.

Возможные возбудители: Грам(-) и Грам(+), риск R штаммов + проблема пенетрации

Решение: Тигециклин

Линкозамиды

- Спектр активности: Грам(+) (кроме MRSA и энтерококков), анаэробы (R *Bacteroides* spp. 15-30%)
- Клиндамицин превосходит линкомицин по уровню антибактериальной активности и биодоступности
- Показания:
 - Нетяжелые стафилококковые и стрептококковые инфекции
 - Некротизирующие инфекции мягких тканей (+ пенициллин)
 - Инфекции костей и суставов
 - В сочетании с бета-лактамами при абдоминальных инфекциях и легочных нагноениях

Метронидазол

- Антимикробная активность анаэробы
- В комбинации с другими антибиотиками при смешанных аэробно-анаэробных инфекциях
 - Абдоминальные
 - Малого таза
 - Некротические мягких тканей
- Не следует присоединять метронидазол к ингибитор-защищенным бета-лактамам, карбапенемам, тигециклину
- Монотерапия внутрь для лечения антибиотикоассоциированной диареи (*C.difficile*)

Антимикотики

- Нистатин не всасывается
 - Не используется для лечения и профилактики системных кандидозов
- Кетоконазол вариабельная биодоступность, терапевтические концентрации не достигаются
 - Только местное лечение

Системные антимикотики

- Флуконазол (возможна устойчивость Candida spp. ≈30%)
 - Системный кандидоз, сепсис 400 (800) мг в сутки
 - Местный кандидоз внутрь 150 мг однократно
- Амфотерицин В токсичен
- Каспофунгин средство выбора при устойчивости к флуконазолу
- Вориконазол средство выбора при аспергиллезе

Современные возможности терапии нозокомиальных инфекций, вызванных поли- и панрезистентными возбудителями

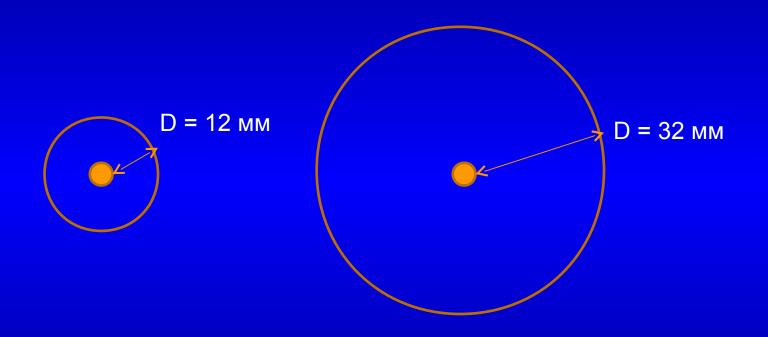
Резистентность к антибиотикам

Микробиологический феномен

Клинический феномен

- Повышение МПК
- Категория « R » или « I »

• Снижение эффективности


Современные особенности антибиотикорезистентности в стационаре

- Широкое распространение антибиотикорезистентных штаммов, особенно в отделениях с «чрезмерным» использованием АБП
- Быстрая селекция антибиотикорезистентных штаммов
- Малая эффективность сан-эпидемиологических мероприятий по сдерживанию резистентности
- Старые качественные критерии чувствительности не позволяют адекватно прогнозировать клиническую эффективность антибиотиков (БЛРС, KPC, MRSA, VRE)

Новые резервуары антибиотикорезистентных штаммов

- Мобильные телефоны
- Фонендоскопы
- Компьютеры клавиатура и мышь
- Датчики УЗ аппаратов

Зона подавления роста

- 1. Необходимы дозозависимые критерии
- 2. Необходимо внедрять количественное определение чувствительности МПК (Е-тест)

Пациент в ОРИТ с НПивл и тяжелым сепсисом. Из крови и аспирата трахеи выделена *Klebsiella pneumoniae*. Рекомендации по АБТ?

<u>Антибиотики</u>	<u>Результат</u>		
Ампициллин/СБ	S	R	R
Цефтриаксон	S	R	R
Цефтазидим	S	S	R
Цефоперазон/СБ	S	S	R
Имипенем	S	S	R
Амикацин	S	1.0	R
Ципрофлоксацин	S	R	R
Полимиксин Е	S	S	R

«Горячие точки» резистентности возбудителей нозокомиальных инфекций

Возбудители	Традиционные проблемы	Новые проблемы
Стафилококки	MRSA	VISA
Энтерококки	PBP₅ – R к β-лактамам	VRE
Enterobacteriaceae	Цефалоспориназы	Карбапенемазы
Acinetobacter	Устойчивость к ЦС, ФХ	ОХА - R к карбапенемам
P.aeruginosa	Полирезистентность	Панрезист-ть

Стафилококковые инфекции

S.aureus

Чувствительность к метициллину (оксациллину)

MSSA

Препараты выбора: β-лактамы

Оксациллин

Цефазолин

NB! Менее эффективны: Цеф III, Ципро, Ванко

MRSA

Гликопептиды

Оксазолидиноны

Липопетиды

Глицилциклины

Проблемы AБT MRSA инфекций

- Отсутствует практика эмпирического назначения анти-MRSA антибиотика
 - Задержка с достижением адекватности
 - Продление госпитализации, увеличение летальности
- Снижение чувствительности MRSA к антибиотикам
- Не всегда данные in vitro позволяют прогнозировать клинический эффект

Клиническая интерпретация резистентности к оксациллину

Результат бактериологического исследования

Микроорганизм: Staphylococcus aureus

Оксациллин R

Цефазолин R

Цефтриаксон R

Имипенем S Клинически R

Линкомицин R

Гентамицин S Клинически R

Ципрофлоксацин S Клинически R

Ванкомицин S

Линезолид S

Резистентные стафилококки - MRSA

Methicillin = оксациллин (ORSA)
Resistant

Staphylococcus

Aureus

- Распространенность в ОРИТ
 - В среднем 65% (от 5 до 90%) [Сидоренко С.В., 2003]
- Клиническая интерпретация
 - При устойчивости к оксациллину:
 - Устойчивость ко всем бета-лактамам
 - Устойчивость к аминогликозидам, макролидам, линкозамидам

Детекция метициллинрезистентности

Диско-диффузионный метод

- Недостаточная специфичность оксациллина как маркера (80%)
- Цефокситин большая чувствительность и специфичность

Метод серийных разведений

 Высокая чувствительность и специфичность, мало применим в массовой практике

Скрининг на агаре

Высокая чувствительность и специфичность (только для Sau)

<u>Альтернативные методы</u>

- Детекция ПСБ2а серологически
- Детекция тесА гена (ПЦР) золотой стандарт

Антибиотики для лечения MRSA инфекций

- Ванкомицин (кат. доказ. ІА)
- Линезолид (кат. доказ. IA)
- Даптомицин (кат.доказ. IA)
- Тигециклин (кат.доказ. IIB)

<u>Альтернативные ср-ва при чувствительности MRSA</u>

- Ко-тримоксазол: эффективность документирована при неосложненных инф. КиМТ; мало эффективен при НП и АИ
- Рифампицин: Клин. данных нет. Только в комбинации. Синергизм +. Тканевая пенетрация +.
- Левофлоксацин, Моксифлоксацин: эффективность при НП не установлена (только внебольничные MRSA КиМТ)

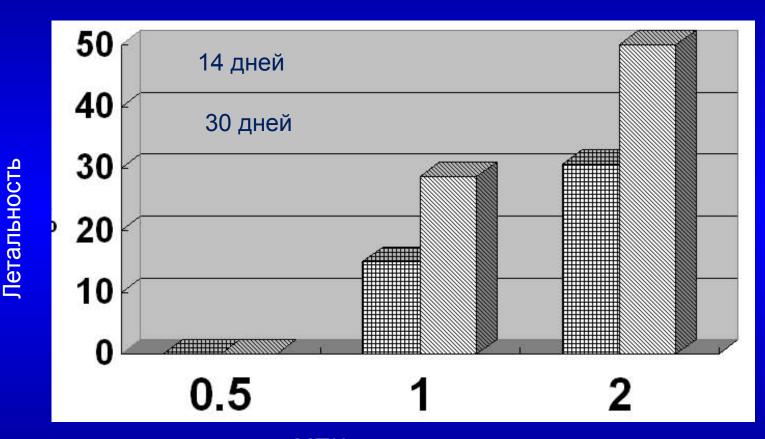
Ванкомицин – базовый антибиотик для лечения MRSA инфекций

Проблемы ванкомицина:

- 1. Невысокая природная активность против *S.aureus*
- 2. Низкая пенетрация в ткани, прежде всего, легкие, ЦНС, кость
- 3. Снижение чувствительности стафилококков к ванкомицину в последние годы
- 4. Невозможно прогнозировать клинический эффект на основании исследований in vitro

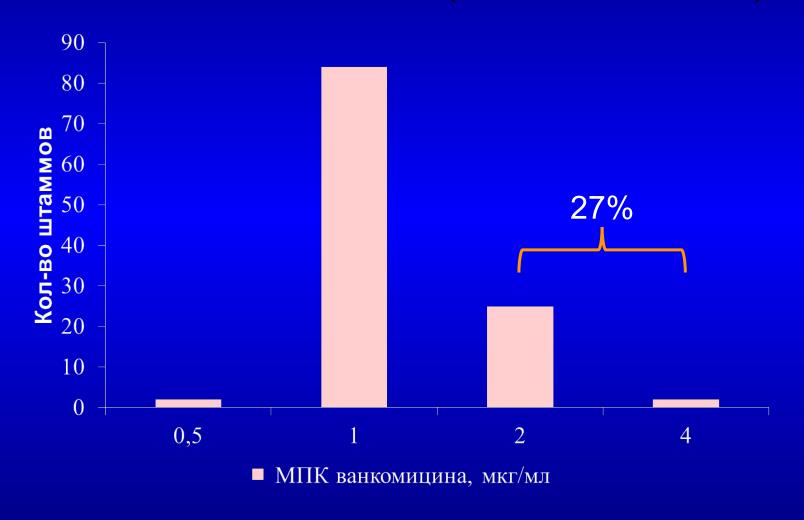
Сравнительная эффективность препаратов при экспериментальных *S. aureus* абсцессах

	Log ₁₀ CFU	
-	3-дневный	7-дневный
Группы	курс	курс
Контроль	9.23 ± 0.37	8.82 ± 0.50
Нафциллин	3.49 ± 0.65	3.63 ± 0.55
Цефазолин	2.48 ± 0.67	3.50 ± 0.46
Ванкомицин	7.94 ± 0.29	6.17 ± 1.16
Тейкопланин	7.71 ± 0.31	7.64 ± 0.55


Факторы риска летальности при MRSA бактериемии при различных МПК ванкомицина

Ванкомицин	<u>OR (95% ДИ)</u>	<u>P</u>
МПК 1 мкг/мл	1	
МПК 1,5 мкг/мл	2,86 (0,8-9,3)	<0,0001
МПК 2 мкг/мл*	6,39 (1,6-24,3)	0,0003
Неадекватная АБТ	3,6 (1,2-10,9)	
Септический шок	7,3 (4,1-13,3)	<0,0001

^{*} Чувствительные штаммы; R > 2 мкг/мл


Soriano A et al. Clin Infect Dis 2008; 46: 193-200

MRSA бактериемия

МПК ванкомицина

Распределение МПК ванкомицина в отношении MRSA (113 штаммов)

Рекомендации по дозированию ванкомицина

- Для достижения целевого фармакодинамического параметра AUC₂₄/MIC ≥ 400 при инфекциях, вызванных стафилококками с МПК ≤ 1.0 мкг/мл, конечная концентрация должна быть на уровне 15.0 – 20.0 мкг/мл.
- Рекомендуется 25.0 30.0 мг/кг, затем 15.0 20.0 мг/кг каждые 8 12 ч. При разовых дозах более 1.0 г длительность инфузии необходимо увеличивать до 1.5 2.0 ч.
- В отношении штаммов с МПК = 2.0 мкг/мл рекомендуются альтернативные режимы дозирования.

Consensus ASHSP & IDSA, Clin Infect Dis 2009; 49:325-7 IDSA Guidelines on MRSA, Clin Infect Dis 2011;52:1-38

Возможности ванкомицина в 2011 г.

Потенциал ванкомицина сохраняется при лечении

- Инфекций мочевыводящих путей
- Инфекций кожи и мягких тканей
 - без некроза
- Ангиогенных инфекций
 - с санированным первичным очагом
- MRSA инфекций с МПК < 1 мкг/мл

Выбор анти-MRSA антибиотиков

Ванкомицин

Бактериемия
(с санированным очагом)
ИМВП
ИКиМТ без сепсиса
ИЭ (без ПОН)

Линезолид

НП
Инфекции ЦНС
Тяжелый сепсис
Некротические ИКиМТ
Инфекции на диализе

Даптомицин

Ангиогенный сепсис MRSA бактериемия (источник – не легкие) ИЭ (+ПОН) ИКиМТ + остеомиелит

Тигециклин

Полимикробные

инфекции:

MRSA + Грам(-)

Возможные причины более высокой надежности пролонгированных курсов АБТ *S.aureus* инфекций

- Формирование вторичных локусов инфекции (до 36%, рецидивы 8-10%)
- Не диагностированный ИЭ или остеомиелит высокий риск рецидивов
- Биопленки
- Толерантные стафилококки

Надежная длительность АБТ инфекций, вызванных *S.aureus*: не менее 10 дней, при бактериемии – 14-28 дней

Клиническое значение энтерококков

- Низкая вирулентность чаще суперинфекция
 - Нозокомиальная бактериемия/сепсис
 - Нозокомиальные абдоминальные инфекции
 - Осложненные инфекции мочевыводящих путей (преим. нозокомиальные)
 - Эндокардит (наркоманы; протезированный клапан)
- Факторы риска
 - Перфорация кишки
 - Длительная антибиотикотерапия (особ.цефалоспоринами)
- Часто ассоциируются с абсцессами в брюшной полости и малом тазу

Алгоритм АБТ энтерококковых инфекций

Enterococcus faecalis

Enterococcus faecium

Чувствительность к ампициллину

ДА

HET

Ампициллин 8-12 г/с Левофлоксацин 1 г Моксифлоксацин 0,4 г (??)

NB! Может быть более низкая эффек-ть: AMO/КК, карбапенемы, ванко, АГ Ванкомицин

Линезолид + VRE

Тигециклин + VRE

Даптомицин

Лечение VRE

Разрешены FDA	Не разрешены, но могут применяться	Изучаются
Линезолид	Даптомицин	Оритаванцин
	Тигециклин	Цефтобипрол
	Нитрофураны	
	Фосфомицин	
	Доксициклин	
	Фторхинолоны	
	Рифампин	
	Хлорафеникол	

«Горячие точки» резистентности возбудителей нозокомиальных инфекций

Возбудители	Традиционные проблемы	Новые проблемы
Стафилококки	MRSA	VISA
Энтерококки	PBP₅ – R к β-лактамам	VRE
Enterobacteriaceae	Цефалоспориназы	Карбапенемазы
Enterobacteriaceae Acinetobacter	Цефалоспориназы Устойчивость к ЦС, ФХ	Карбапенемазы ОХА - R к карбапенемам

Механизмы устойчивости энтеробактерий к бета-лактамам

Бета-лактамазы:

БЛРС

AmpC

OXA

KPC

NDM

Цефалоспориназы

Карбапенемазы

Комплексные:

БЛРС + ОМР

БЛРС + АмрС

Что надо знать клиницисту о БЛРС (бета-лактамазы расширенного спектра)?

- Широко распространены в стационарах РФ (>50%)
- Наиболее часто выделяются у *E.coli*, *Klebsiella* spp., *Proteus mirabilis*, но могут быть у всех энтеробактерий
- Клинически не эффективны все цефалоспорины (даже при чувствительности in vitro!)
- Высокая частота ассоциированной устойчивости к аминогликозидам и фторхинолонам

Что надо знать клиницисту о БЛРС (бета-лактамазы расширенного спектра)?

- Все баклаборатории обязаны проводить детекцию БЛРС у энтеробактерий
 - Метод двойных дисков: цефтазидим + клавуланат
- Сложности детекции возможны ошибки в определении чувствительности
- Экспертное правило: При устойчивости энтеробактерий хотя бы к одному из цефалоспоринов III поколения, считать вероятной продукцию БЛРС и трактовать как устойчивость ко всем цефалоспоринам!

Косвенные признаки бета-лактамаз расширенного спектра

Результат бактериологического исследования

Микроорганизм: Klebsiella pneumoniae

Ампициллин	10 мм	R	
Амоксициллин/КК	13 мм	R	
Цефтриаксон	18 мм	R <5]	
Цефотаксим	16 мм	R ← S }	Признак!
Цефтазидим	14 мм	R J	
Цефепим	22 мм	R ←S	
Меропенем	26 мм	S	
Амикацин	16 мм	S/r	
Ципрофлоксацин	13 мм	R/s	
Цефтазидим + АМО/КК	20 мм	s 	Признак!

Детекция БЛРС

Скриннинг и подтверждающий тест (CLSI, 2010)

1. Скриннинг

•	L ефподоксим	≤ 17 MM
_	г ефподоксии	

- Цефтазидим ≤ 22 мм
- Азтреонам ≤ 27 мм
- Цефотаксим ≤ 27 мм
- Цефтриаксон ≤ 25 мм

2. Подтверждение

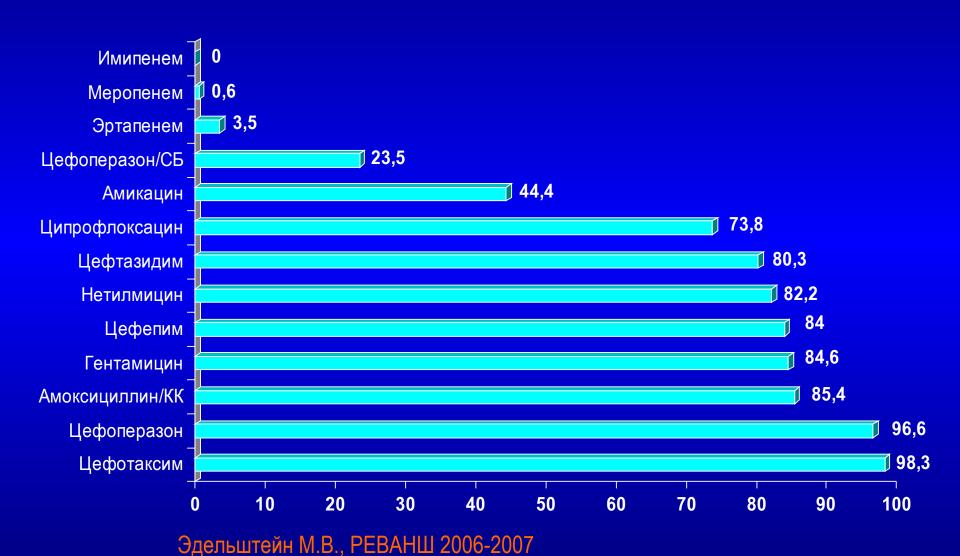
• Цефтазидим 30 мкг и Цефтазидим/клавулановая к-та 30/10 мкг

И

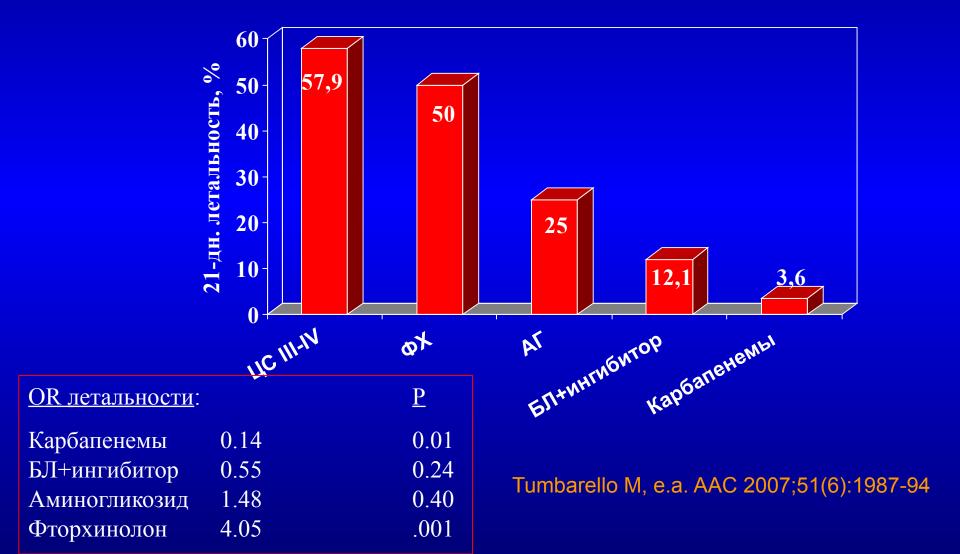
 Цефотаксим 30 мкг и Цефотаксим/клавулановая к-та 30/10 мкг

Увеличение D зоны подавления ≥ 5 мм

Но... присутствие AmpC маскирует БЛРС


Подтверждающий тест (двойные диски)		Фенотипический метод	
Цефтазидим	18	Цефотаксим	S
Цефтазидим + КК	19	Цефтриаксон	S
		Цефтазидим	R
Цефотаксим	28	Цефепим	S
Цефотаксим + КК	28	Имипенем	S

Вывод: БЛРС нет Вывод: БЛРС +


БЛРС

Возможности терапии

Устойчивость продуцентов БЛРС к антибиотикам

Эффективность различных режимов терапии инфекций с бактериемией, вызванных БЛРС-продуцентами

БЛРС: возможности лечения

- Наиболее надежны карбапенемы
 - Летальность при раннем назначении 4% [D.Paterson, 2001]
 - ФД обоснован режим дозирования 1.5-2 г/сут
 - Меропенем = Дорипенем = Имипенем ≥ Эртапенем
- Есть ли альтернатива?
 - Цефоперазон/сульбактам 8 г/сут
 - Пиперациллин/сульбактам 4,5 г каждые 6-8 часов
 - Тигециклин 50 мг каждые 12 часов (первая доза 100 мг)

NB! Другие антибиотики клинически не эффективны (даже при чувствительности in vitro)

Готовы ли мы к появлению энтеробактерий, устойчивых к карбапенемам?

Klebsiella pneumoniae & E.coli, устойчивые к карбапенемам

Карбапенемазы класса А (KPC)

МПК 4-32 мкг/мл Снижение МПК в присутствии клавулановой кислоты

Меропенем 4 г/сут или Имипенем 4 г/сут (3-час инфузия) + Ингибитор бета-лактамаз¹

Металло-бета-лактамазы класса В (NDM-1)

МПК >32 мкг/мл

Синергидный тест с ЭДТА

Чувствительность к азтреонаму

Другие антибиотики (комбинации)

- -Тигециклин
- -Колистин
- –Азтреонам

¹ Цефоперазон/сульбактам, Ампициллин/сульбактам, ПИП/ТАЗО

Яковлев С.В., Клин Фарм и Терапия 2011, #1

Ацинетобактерии

- Acinetobacter
 - baumannii
 - calcoaceticus
 - Iwoffii
- Широко распространены в природе и в стационаре
- Практически апатогенны для здоровых людей
- Тяжелые инфекции в ОРИТ
 - Значение возросло в последние 5 лет (2-4 место)
- Важность дифференцировки инфекции и колонизации
- Обычно характеризуются множественной устойчивостью к антибиотикам

Современные возможности терапии нозокомиальных инфекций, вызванных Acinetobacter baumanii

		Устойчивость, %
•	Цефоперазон/сульбактам	2-7
•	Тигециклин	5-10
•	Карбапенемы –	
	имипенем, меропенем	5-40
•	Колистин	0-5
•	Нетилмицин	20-40

К другим антибиотикам устойчивость выше

Активность бета-лактамов в отношении P. aeruginosa

Препараты в порядке убывания активности

 Дорипенем = Меропенем > Имипенем > Цефепим = Цефтазидим > Цефоперазон = Цефпирамид = Азтреонам = Уреидопенициллины > Карбоксипенициллины

Механизмы устойчивости

- Гиперпродукция хромосомных бета-лактамаз (ЦСІІІ, ПИП/ТАЗО)
- Снижение проницаемости (Имипенем)
- Активное выведение (Меропенем, Цефепим)
- Продукция металло-бета-лактамаз (все бета-лактамы, кроме Азтреонама)
- Возможны многочисленные фенотипы

Инфекции, вызванные Pseudomonas aeruginosa


- Тенденции распространения резистентных штаммов P.aeruginosa в ОРИТ РФ
 - Высокая устойчивость к ципрофлоксацину и амикацину
 - Устойчивость к цефепиму > цефтазидиму
 - Устойчивость к меропенему ≤ имипенему
 - Практически нет устойчивости к колистину
 - Небольшая устойчивость к пиперациллин/тазобактаму

Инфекции, вызванные Pseudomonas aeruginosa

- Нет «идеального» антибиотика
- Сложности планирования эмпирической терапии при отсутствии данных локального мониторинга устойчивости
- В случае полирезистентных штаммов
 - Оправданы максимальные дозы
 - Целесообразны продленные инфузии бета-лактамов
 - Оправданы комбинации бета-лактамов с аминогликозидами
- В случае панрезистентных штаммов целесообразно определение МПК

Основы рационального применения антибиотиков

Участники инфекционного процесса

Микроорганизмы, вызывающие инфекционные заболевания у человека

- Бактерии
 - Истинные бактерии
 - Риккетсии и хламидии
 - Микоплазмы
- Грибы
- Вирусы
- Простейшие

Инфекционная характеристика микробов

• Патогенность

- Патогенные бактерии
 - Bacillus anthracis, Yersinia pestis, Francisella tularensis
- Условно-патогенные бактерии
 - Стафилококки, стрептококки, кишечная палочка
- Непатогенные бактерии
 - бифидобактерии, большинство микробов почвы, воды

• Вирулентность

Степень патогенности (способность вызывать инфекцию)

• Инвазивность

- Способность диссеминировать в организме

Основные группы бактерий

- Грамположительные
- Грамотрицательные
 - Принципиальных различий в строении цитоплазматической мембраны и во внутреннем строении нет
 - Различия касаются строения клеточной стенки

Анаэробные микроорганизмы – клиническое значение

- Доминирующая микрофлора толстой кишки
- Этиологическая значимость при инфекциях в области естественного обитания – эндогенная контаминация
 - Брюшная полость
 - Малый таз
 - Грам(-): Bacteroides fragilis и др.
 - Грам(-): *Clostridium* spp.
- Отдаленные локусы
 - Экзогенная контаминация раны некротические инфекции мягких тканей: Clostridium spp.
 - Экзо-эндогенное распространение абсцессы

Категории чувствительности микроорганизмов

<u>Чувствительный</u>

• лечение инфекции, вызванной данным микроорганизмом при применении данного антибиотика вероятно будет эффективным

<u>Промежуточный</u>

 лечение инфекции, вызванной данным микроорганизмом при применении данного антибиотика может быть эффективным при использовании повышенных доз и при локализации очага инфекции в том участке, где возможно формирование повышенных концентраций антибиотика

Устойчивый

 лечение инфекции, вызванной данным микроорганизмом при применении данного антибиотика вероятно будет неэффективным

Основная характеристика антибактериальной активности

• МПК – минимальная подавляющая концентрация

- Минимальная концентрация, вызывающая задержку видимого роста культуры бактерий

Методы определения чувствительности к

- Качествені
 - Диско-ди
- Полуколич
 - Автомати
- Количество
 - Метод сериип-
 - Е-тест

Методы	Точность	Трудозатраты	Стоимость
Диски	+	+	+
Анализаторы	++	+	++
Серийные разведения	+++	+++	+
Е-тест	+++	+	+++

Резистентность микроорганизмов

- Природная (генетическая)
 - Легко прогнозируется
 - Абсолютная неэффективность антибиотика

• Приобретенная

- Первичная (до начала лечения)
- Вторичная (на фоне лечения)
 - Сложно прогнозировать
 - Эффективность антибиотика слабо предсказуема

Взаимодействие «микроб – антибиотик»

• Природная активность

- Бензилпенициллин характеризуется самой высокой природной активностью против стафилококков
- Постоянная и стабильная величина для диких штаммов

Приобретенная устойчивость

- Около 95% стафилококков продуцируют бета-лактамазы класса А и устойчивы к бензилпенициллину
- Возникает у части штаммов
- Переменная величина
- Динамику распространения можно проследить по увеличению показателей МПК₅₀ и МПК₉₀

Инфекционный процесс

• Инфекция – микробиологический и клинический феномен, характеризующийся воспалительным ответом на присутствие микроорганизмов или инвазией микроорганизмами стерильных тканей

[Bone et al., 1992]

Этапы инфекционного процесса

- Адгезия микроорганизмов к эпителию клеткам хозяина
- Инвазия микроорганизмов во внутренние среды хозяина
- Пролиферация микроорганизмов во внутренних средах хозяина
- Развитие системной воспалительной реакции макроорганизма
- Исход инфекции:
 - Выздоровление эрадикация возбудителя
 - Выздоровление без эрадикации
 - Латентное персистирование без индукции ССВР (биопленки)
 - Смерть

Клинические признаки бактериальной инфекции (не строго специфичны)

• Общие симптомы:

- лихорадка
- ознобы
- интоксикация
- лимфаденопатия
- спленомегалия
- артралгии и миалгии
- Лабораторные признаки
 - лейкоцитоз
 - сдвиг влево или нейтрофилез
 - лимфопения
 - СРБ > 24 мг/л (высокочувствительный маркер)
 - анемия
- Местные симптомы

Высокоспецифичный маркер:

Прокальцитонин > 2 нг/мл

Антимикробная терапия

Антимикробная терапия – лечение вызванных микроорганизмами инфекционных заболеваний лекарственными препаратами, избирательно действующими на эти микроорганизмы

- Эмпирическая терапия
- Целенаправленная (этиотропная) терапия
- Эффективная терапия
- Адекватная терапия
- Де-эскалационная терапия

Цель АБТ: эрадикация возбудителя

Факторы, определяющие успех лечения инфекций

- Сроки установления диагноза начала терапии
- Эффективная микробиологическая диагностика
 - Адекватный забор материала
 - Доставка
 - Микробиологические методы
 - Оценка и интерпретация результатов
- Адекватный выбор антибиотика (препарат и доза) и контроль лечения

Адекватная микробиологическая диагностика

- Взятие материала для бактериологического исследования
 - До начала АБТ
 - Из локуса, максимально приближенного к предполагаемому очагу инфекции
 - Адекватный метод забора материала
 - Соблюдение условий, препятствующих контаминации образца сапрофитной флорой
 - Гемокультура: минимум 2 пробы с интервалом 0,5-1 ч
 - Обеспечение немедленной доставки материала в лабораторию или использование транспортных сред

Адекватная микробиологическая диагностика

- Окраска материала по Граму 30-60 мин
 - Грам(+) кокки (скопления) S.aureus
 [оксациллин, цефазолин, ванкомицин, линезолид]
 - Грам(+) кокки (цепочки) Streptococci
 [ампициллин, цефотаксим]
 - Грам(-) палочки E.coli и др.
 [ципрофлоксацин, цефтриаксон,
 НИ: карбапенем, ПИП/ТАЗО, ЦЕФ/СБ]
- Культуральный метод (выделение, идентификация, чувствительность) 48-72 ч
- Клиническая интерпретация результата

Типичные ошибки определения чувствительности к антибиотикам диско-диффузионным методом

• Методологические

- Нестандартизованные диски
- Нестандартизованные среды
- Нарушение условий хранения
- Изменение посевной дозы микробов
- Неадекватные критерии чувствительности

• Объективные

- Низкий уровень экспрессии факторов резистентности
- Плохая диффузия антибиотика в агар

Сроки оценки адекватности антибактериальной терапии

- Первоначальная
 - 48-72 часа
 - Снижение интоксикации и лихорадки
 - Результат бактериологического исследования
 - Снижение кол-ва микробов или эрадикация

- Окончательная
 - Критерии достаточности терапии
 - Положительная динамика симптомов инфекции
 - Отсутствие ССВР, ПОН, стабильная гемодинамика

Ограничение длительности антибактериальной терапии

- В большинстве ситуаций достаточно 5-7 дней.
- Исключения:
 - Staphylococcus aureus
 - «труднодоступная» локализация инфекции
 - ЦНС, клапаны сердца, кость
 - Сохраняющаяся нейтропения

Отличительные особенности антибиотиков как лекарственных средств

- Мишень действия микроорганизм
- Избирательность действия на прокариотическую клетку
- Снижение активности и эффективности со временем

От чего зависит эффективность антибиотиков?

Микроб Человек

Киллинг in vitro

- 1) Природная активность
- 2) Резистентность
- 3) Толерантность

Киллинг in vivo

- 1) Проникновение в очаг
- 2) Способность киллинга в очаге
- 3) Скорость киллинга
- 4) Способность микробов выживать в присутствии А
- 5) Способность формировать R

Реакция воспаления
Факторы местной и общей защиты
Специфический и неспецифический иммунитет

Яковлев С.В., 2010 г.

Бактерицидные и бактериостатические антибиотики

• Бактерицидные: МБК = 1-4 МПК

• Бактериостатические: МБК > 4 МПК

- В каких клинических ситуациях принципиально важна бактерицидность антибиотика
 - Тяжелый сепсис/шок (высокий риск быстрой смерти)
 - Пневмония (большая обсемененность)
 - Инфекционный эндокардит, остеомиелит (труднодоступная локализация)

Взаимодействие «микроб – антибиотик»

• Какой антибиотик характеризуется более высокой природной активностью против S.aureus?

	Антибиотик А	Антибиотик Б
МПК, мг/л	1	8

• При применении какого антибиотика (А или Б) прогнозируется более высокая клиническая эффективность при стафилококковом пиомиозите?

Антибиотик А Антибиотик Б Концентрации 0,5 20 в мышцах, мг/л

Алгоритм принятия решения при назначении антибактериальной терапии

Определение показаний для назначения антибиотика

Адекватная микробиологическая диагностика

Определение показаний для назначения антибиотика

- Аксиомы АБТ: «показанием для назначения антибиотика является документированная или предполагаемая бактериальная инфекция»
 - Или высокий риск ее возникновения (профилактика)
 - При доказанной эффективности АБ профилактики

- Клинико-лабораторные признаки инфекции:
 - CCBP
 - Общие и местные симптомы инфекции
 - Биохимические маркеры (СРБ, прокальцитонин)
 - Органная дисфункция при сепсисе

Возможности антибиотикопрофилактики НИ

Доказано

- Периоперационная профилактика
 - Снижение риска п/о раневых инфекций
- Профилактика осложнений деструктивного панкреатита
 - Снижение летальности
- СДК
 - Снижение риска НП и сепсиса
 - Риск селекции резистентных микроорганизмов
 - Не рекомендуется рутинно

Не доказано

- Профилактика НПивл
- Профилактика абдоминальных инфекций
- Профилактика сепсиса при ожоговой травме
- При бессимптомной бактериурии
- Антифунгальная профилактика при отсутствии нейтропенеии

Антимикробная терапия

Эмпирическая

Целенаправленная(Этиотропная)

Что определяет выбор режима эмпирической антибактериальной терапии?

- Условие возникновения инфекции
 - Внебольничная или госпитальная
- Локализация инфекции
 - Превалирующие возбудители
- Факторы риска резистентных возбудителей
 - Локальные данные мониторинга устойчивости
- Тяжесть пациента
 - Эскалация или де-эскалация
- Фармакокинетика (проникновение в очаг инфекции)

Инфекции в стационаре

Внебольничные

- Известная этиология
- Минимальная и прогнозируемая устойчивость
- Региональное сходство
- Эффект АБП прогнозируем

Нозокомиальные

- Вариабельная этиология
- Устойчивость к АБП широко распространена
- Различия между ЛПУ
- Эффект АБП не всегда прогнозируем

Связанные с медпомощью

(Health-Care Associated)

- Развиваются вне стационара
- Характерна антибиотикорезистентность среди возбудителей

Три условия появления нозокомиальных инфекций

Условие	Причины
Больницы	Ограниченное пространство, тесный контакт между пациентами
Антибиотики	Селекция резистентной флоры
Реанимация и анестезиология	Выживание тяжелых пациентов

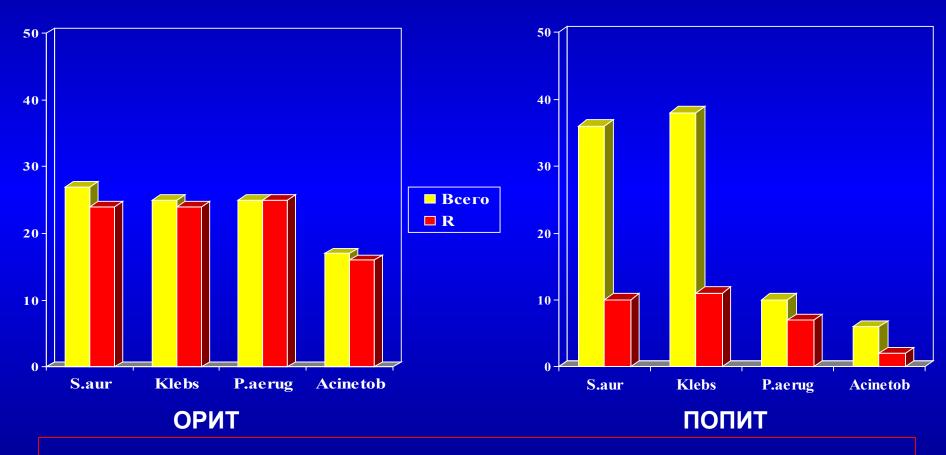
Проблемы, связанные с нозокомиальными инфекциями

- Высокая заболеваемость
- Риск летального исхода
- Потребление дополнительных материальных ресурсов
- Необходимость разработки дополнительных мер профилактики, контроля и лечения НИ
- Появление и распространение резистентной флоры, в т.ч. во внебольничную среду

Экспертное правило

Антибиотики для лечения госпитальных инфекций не должны рутинно назначаться при внебольничных инфекциях

Выбор эмпирической АБТ: учет факторов риска антибиотикорезистентных возбудителей


- Предшествующая антибактериальная терапия (3-6 мес)
- Госпитализация в предшествующие 3 месяца
- Перевод из другого стационара
- Дневной стационар поликлиники с введением лекарств
- Пребывание в домах длительного ухода
- Хр. гемодиализ
- Медработники?
 - Колонизация слизистых антибиотикорезистентными штаммами

Локализация инфекции – ориентир для выбора эмпирической терапии

Источник инфекции	Возбудители	Режим терапии
Почки	E.coli	ЦС II-IV или ФХ
Брюшная полость	E.coli Enterococci Анаэробы	Бета-лактам + ингибитор ЦС III-IV + метронидазол Карбапенем
В/с катетер	Staphylococci	Оксациллин Ванкомицин Линезолид Даптомицин
	5	Яковлев С.В., 2010 г.

Знай «своих» возбудителей

Ведущие возбудители инфекций (в %) в двух отделениях интенсивной терапии

Pезистентные микроорганизмы: *S.aureus* – MRSA, *Klebsiella* – ESBL *P.aeruginosa* – MDR, *Acinetobacter* – Cef III-IV – R

Антибактериальная терапия

Возбудитель известен

Этиотропная

Возбудитель не уточнен

Эмпирическая

Минимальная

(эскалация)

Максимальная

(де-эскалация)

Реализация де-эскалационной терапии

- Назначение на первом этапе эмпирической терапии антибиотика:
 - с максимально широким «охватом» всех потенциальных возбудителей
 - преодолевающего наиболее актуальные механизмы резистентности
 - Достижение адекватности терапии
- Возможная замена первоначального антибиотика на препарат с более узким спектром после получения результата микробиологического исследования

Реализуема ли де-эскалация?

Причины, по которым не всегда возможно скорректировать эффективную терапию с учетом выделенного возбудителя

Субъективные

• Психологические

<u>Объективные</u>

- Сложности интерпретации результатов
 - Истинный возбудитель? Единственный возбудитель?
- Ограничения метода
 - Условность микробиологических критериев чувствительности

Реальные возможности де-эскалации

Ангиогенный катетер-ассоциированный сепсис

- Ванкомицин или Даптомицин
 - 48 часов: MSSA → Оксациллин

ИЭ ТК, пневмония, тяжелый сепсис

• Оксациллин + Ванкомицин

НПивл + тяжелый сепсис с ПОН

- Карбапенем + Линезолид

Максимальная (де-эскалационная) терапия Принцип разумной достаточности

Потенциал антибиотиков при перитоните (условно)

Режимы терапии	Инфекция		
	внебольничная	нозокомиальная	
AMO/KK			
Клинда + АГ			
ЦС I + Клинда			
ЦС II-III + Метро			
ПИП/ТАЗО			
Цефоп/СБ			
Карбапенем			
Тигециклин			

Выбор антибиотиков при внебольничном и нозокомиальном сепсисе: принцип разумной достаточности

СЕПСИС

Внебольничный

Нозокомиальный

Амоксициллин/клавуланат

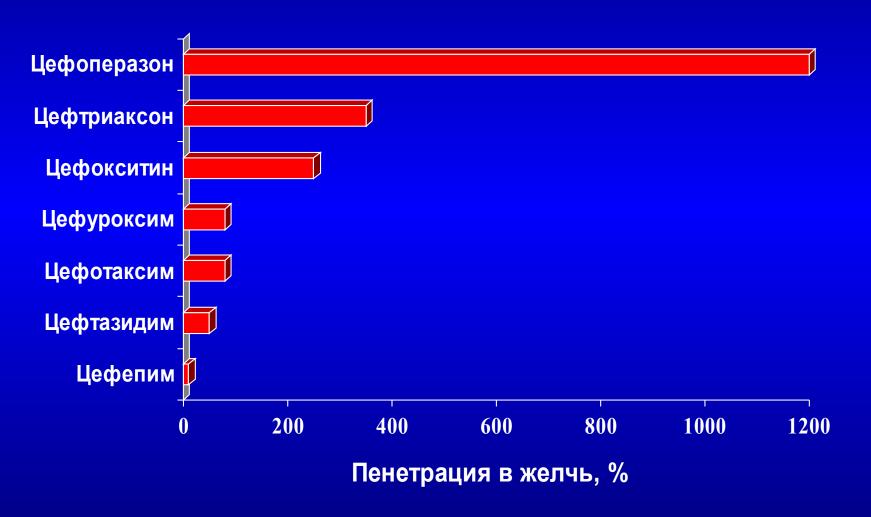
Цефалоспорин III-IV

Нозокомиальный

Меропенем, Имипенем

Цефоперазон/сульбактам

Сепсис. Практическое руководство, 2010 г.


Новые фторхинолоны

Экскреция фторхинолонов с мочой

Препарат	24-ч экскреция с мочой	Стах в моче, мг/л
Ципрофлоксацин 500	40,8%	585
Пефлоксацин 800	13,2%	84
Левофлоксацин 500	70,7%	579
Моксифлоксацин 400	16,9%	55
Гемифлоксацин 320	25-40%	120

Naber K, e.a. 2000

Проникновение цефалоспоринов в желчь

Burke A. & Cunha M., 2005; Andriole VT, 1996

Тканевая ФК антибиотиков

Коэффициент пенетрации

Аминогликозиды Бета-лактамы Тигециклин Ванкомицин Фторхинолон

Логика принятия решения при неэффективности эмпирической терапии

- Ре-оценка обоснованности АБТ
 - Оценка «инфекционности» ССВР (SIRS)
- Оценка первичного и вторичного очагов инфекции (возможность санации?)
- Повторный анализ адекватности применяемого режима АБТ
 - Дозы
 - ФК (локализация очага), тяжелый сепсис
- Объективная потребность в смене АБТ
 - Эмпирически
 - Целенаправленно
 - Максимальная бактерицидность
 - Критический анализ антибиотикограммы

Наиболее значимые «проблемы» в спектре антибиотиков

Бета-лактамы MRSA

• Цеф III БЛРС, энтерококки, *S.aureus*

• Цеф/СБ, цефтазидим Грам(+)

• Цеф I-II все Грам(-)

Карбапенемы энтерококки, S.maltophilia

• Ципрофлоксацин *S.aureus*, стрептококки,

Ацинетобактер

• Моксифлоксацин P.aeruginosa

• Тигециклин *P.aeruginosa*

Что определяет выбор режима целенаправленной антибактериальной терапии?

- Оценка клинической значимости выделенного микроорганизма
- Критический анализ антибиотикограммы (интерпретационный учет)
- Природная активность антибиотика
- Знание механизмов устойчивости

Интерпретация результатов – оценка значимости условно-патогенных микроорганизмов

- Микроорганизм истинный возбудитель инфекции
 - При выделении из первично стерильного локуса
 - Кровь, брюшная полость
 - При выделении из необычного для микроба локуса в большом количестве (> 10⁴ – 10⁵ КОЕ/мл)
- Микроорганизм компонент нормальной микрофлоры локуса, из которого был получен материал
- Микроорганизм, колонизующий локус, из которого был получен материал

Что определяет выбор режима целенаправленной антибактериальной терапии?

- Оценка клинической значимости выделенного микроорганизма
- Критический анализ антибиотикограммы (интерпретационный учет)
- Природная активность антибиотика
- Знание механизмов устойчивости

Маловероятные фенотипы чувствительности

Грам(-) - <i>E.coli</i>		Грам(+) – S.pneumoniae	
Ципрофлоксацин	R	Эритромицин	R
Левофлоксацин	S	Азитромицин	S
Гентамицин	S	Амоксициллин	R
Амикацин	R	Амоксициллин/К	KK S
Имипенем	R	Грам(+) – <i>S.aur</i>	eus
Цефепим	S		
		Окса	7
Цефазолин	S	Б- Л	3
Цефотаксим	R	АГ	3

Яковлев С.В., 2010 г.

Что определяет выбор режима целенаправленной антибактериальной терапии?

- Оценка клинической значимости выделенного микроорганизма
- Критический анализ антибиотикограммы (интерпретационный учет)
- Природная активность антибиотика
- Знание механизмов устойчивости

Слабая природная активность – риск неуспеха терапии

- Streptococcus pneumoniae
 - Ципрофлоксацин, пероральные ЦС III
- Staphylococcus aureus
 - Ванкомицин, ципрофлоксацин, цефалоспорины III
- Enterococcus faecalis
 - Амоксициллин/КК (доза), меропенем, ципрофлоксацин
- Escherichia coli
 - Ампициллин +/- сульбактам, цефалоспорины I-II

Что определяет выбор режима целенаправленной антибактериальной терапии?

- Оценка клинической значимости выделенного микроорганизма
- Критический анализ антибиотикограммы (интерпретационный учет)
- Природная активность антибиотика
- Знание механизмов устойчивости

Знание механизмов устойчивости – основа достижения эффекта (эрадикации)

MRSA

- Снижение эффекта ванкомицина в диапазоне чувствительности
 - Наиболее надежны: линезолид, даптомицин, тигециклин
- E.coli, Klebsiella, Proteus, Enterobacter БЛРС
 - Не эффективны цефалоспорины даже при чувствительности к ним in vitro
 - Снижение эффективности фторхинолонов и АГ
 - Наиболее надежны: карбапенемы, тигециклин
 - Появление карбапенемаз

Acinetobacter baumanii

- Снижение чувствительности к карбапенемам
- При панрезистентности: Сульперазон + карбапенем

Тигециклин + колистин